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NON-STATIONARY DYNAMIC CONTACT PROBLEM FOR A PERIODIC SYSTEM 
OF STAMPS UNDER ARBITRARY LOADING* 

V .M. FOMIN 

The contact stresses are determined under a periodic system of stamps on 
the boundary of a homogeneous plastic half-plane and moving under the 
action of a lead that is arbitrary in time. Unlike /l/, a more general 
problem is solved when the system of stamps is firstly invariant not only 
with respect to shear (translations) along the half-plane boundary by 
vectors that are multiples of a certain vectora,,but also with respect 
to reflections in a periodic system of parallel planes sr(k='& ti,zt& 
. . . ) perpendicular tothevector a0 and separated from each other by a 
distance Z=]a0]/2 (these transformations form a group Cih /2/, and 

secondly, the load is not assumed to be identical for all stamps (Fig.1). 

1. Let us consider a set X of points on the Ox axis invariant under transformations of 
the group Cl,, (Fig. 2a). We will call the segment ]0,21] basic and the segment [0,1] of the 
axis the basic unit cell (UC) and ascribe the symbols X0 and X,1 tothem,respectively. The UC 
system 

X,,,,,=g,lh,Xol (m,=0,.&1,&2,...; h,eH; n=i,2) 

forms the covering of the set X. A translation by the vector ma, is denoted by g,,,,, and H 
is a point group consisting of two elements, 
h, in the plane II,. 

the identity transformation h, and the reflection 

We introduce local coordinate systems on each of the UC that go over into each other under 
symmetry transformations (Fig.2a). We will later call invariant the system formed by these 
local coordinate systems. If a point I of the half-plane boundary is on the UC Xmn,we shall 
denote it and its abscissa in the invariant coordinate system by x,,,,,. 

We introduce the functions $,(x,,)(n = 1,2), defined on the basic segment X0 I as follows: 

B (+I) = %7x (Jll E Xc& 4l, is the Kronecker delta and n, p = 1,x). We decompose each of these 
functions into components, being transformed into non-equivalent irreducible representations 
of the point group Hk of a certain vector ki= B (D is the Brillouin zone) /2, 3/ 

In these formulas Mk is the number of non-equivalent irreducible representations of 

group Hk, &p is a matrix element of this representation (this matrix is one dimensional 

the group C,, ), and Nk is the order of the group Ht. 

Fig.1 

It follows from the theory of group representations that the functions 

@)nvj (5, k) = hi+,,,, (50, hj’k) exp (- ihlkemao) 

(j = 1, 2, . . ., L; 5 = g*,z,; m = 0, if, +2, .) 

the 
for 

(1.1) 
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aJ 

Fig.2 

for fixed n,k- and p are transformed into an irreducible representation of the group Cl,,. 
The h)'(j = 1, 2, . . ., L) in (1.1) denote elements of the group H that take part in its 

decomposition into left affine classes in the subgroup Hr. 
For a bounded function f(z) on X the series 

(1.2) 

defines a generalized function on the segment T {-x< a< n} with identical ends. 
Then 

1 
f(z) = -(P, exp (- ima)) 2n 

This equation can be written thus 

f (4 = -& (F, exp (-- ikemao)) 

The function F(s,, k) = F(s,, a) is considered generalized 
b = 2na,/l a,, ,I% and k = abl(2n). 

in the Brillouin zone 61, hence 

Let Ax denote a set of bounded functions on X for which the discrete Fourier transform 
(1.2) has the following form: 

F (~~vk)=F~(zov k)+ jiIP~(z~f kj)6(k_kj) (1.3) 

Here PO (z,,, k) is a piecewise continuous function defined in k everywhere in P with the 
exception of a finite number of points, and is integrable in 51 in the sense of the Cauchy 
principal value, while 6 (k) is the delta function. 

By using the theory of group representations the following assertion can be proved: an 
arbitrary function of AX has a discretely continual decomposition 

(1.4) 

in the functions UJnlrl(z, k) t ransformed in irreducible representations of the group Cl,,. Here 
M,isthenumberof non-equivalent irreducible representations of the group of the vector k,, 
and 8, is the unit cell (UC) of the Brillouin zone, i.e., the segment [O,{ b l/21 of the Ozraxis 
(Fig.Zbl. 

Note that the algorithmelucidatedabove. permits decompositionofa funotionofmore general 
form on X into generalized symmetric components (i.e., transformation in irreducible 
representations of the group &)than does the analogous algorithm in /4/. 

2. A system of stamps invariant with respect to transformations of the group Crh (Fig.1) 
is located on the boundary of a homogeneous elastic half-plane. Numbers are ascribed to the 
stamps in conformity with the numbering of the UC on which they are located. We assume the 
varaibles z and t to be dimensionless, we take the length scale equal to a (a is half the 
width of the stamp), and the time to a/c, (c, is the velocity of transverse elastic wave 
propagation). Friction between the stamps and the half-plane is assumed non-existent and the 
length of the contact area is assumed to equal the width of the stamp. 

Lumped vertical forces P,,,,,(t) and moments M,,,,,(t)(m= 0,_+1,+2,...,n = 1,2;t> 0) act on 
the stamps. It is assumed that all the stamps and the half-plane are at rest at ,t,<O. For 
fixed t the forces and moments applied to the stamps can be considered to be functions given 
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in the set X with symmetry group Cl,, having at one point on each of the UC 

p7nn (t) = p (I, t),l JJ,, (t) =- M (2, t) (5 F x,,,; m = 0. &I, 
I2, . .; n := 1, 2) 

We assume that these are functions of Ax, which means that the decomposition (1.4) holds 
for them. There results from the linearity of the formulation of the problem and the symmetry 
of the system of stamps /5/ that the same decomposition also holds in the invariant coordinate 
system for both the contact stresses ~(z,t) and displacements w(.z,t) of points of the stamp 
bases, and moreover, the solution of the problem for arbitrary loading reduces to the solution 
of a series of generalized symmetric problems in each of which the load is transformed into an 
irreducible representation of the group C,,,. 

We note that because of the boundedness of the excitation propagation velocity in an 
elastic medium, the stresses under the stamp during a finite time interval O<t<tta will 
depend on the motion of this stamp and of some finite number of neighbours. Elence, the stresses 
under the stamp can be determined b y solving the problem of a half-plane with a system of a 
finite number of stamps dependent on ta. However, these same stresses can be found by con- 
sidering an infinite system of stamps, which is an extension of the preceding, with an arbitrary 
load from Ax applied to the appended stamps. In the last case, the application of the theory 
of group representations is possible, which results in decay of the problem into a series of 
generalized symmetric_problems in each of which equations must be solved for just two stamps 
(and in some cases even for one). Such an extension should naturally be performed so that the 
extended system has the greatest symmetric properties. 

We will consider the case when the irreducible representation to which this generalized 
symmetric problem corresponds is two-dimensional (0< a< n). 

By using the transformation 

~nlj(5, k)=~ [en (5, k) + (- ‘)“+~‘zz (x, k)] - 

(- I)j+ [e21 (x, k) - (- l)n+j e12 (I, k)] (n, i = 1,2) 

we transfer from the functions O)nlj(~, k) (n, j = 1,2) to the functions eln(z, k) (j, n = 1, 2) that 
are transformed for fixed n into a two-dimensional real irreducible representation of the group 

%(gz,k)= 5 r~q(g)8,,(x,k) (gE Clh; i, n = 1,2) (2.2) 
9=1 

Tjj’ (g,l) = COS mu, TX (g,l) = (- i)4 sin ma (j # 9) 

tjj* (g,z) = (- l)j-1 cos ma, & (g,t) = - sin ma (i # C7) 

(i, q = 1, 2) 

Here a = keao, g,,,, are translations by the vector ma 0, and g,, is the reflection in the 
plane n, (m = 0, *I, f2,. ..). 

We consider the load JJ,,(x, U, t) (j, r = 1, 2) that consists of lumped inpulsive forces 
applied at the points I = g,, ql(zol = U; m=O *I +2 . . . . 1-7-1 n = 1,2) and transformed for fixed 
I into a two-dimensional irreducible representation of the group Clh 

Pjr (TM, n, t) = fjj,h (x0, - U) 6 0) (j, r = 1, 2) 

and the functions pjr(N)(~,u, t) that are finite segments of pjr(s, u,t) 

(2.3) 

PfjV’(z,4t)=p. (5 u t) (sEX,,; Iml,<N; n=l 2) ,7 9 9 7 

pj? (I, 6 t) = 0 (5 E X,,; 1 m ) > N; n = 1,2) 

We find the double transform (Laplace in t and Fourier in I) of the functions pj,‘N)(z,u,t): 

w (E, 4 4 = -&g mtN rj~k(gnw)exp(i2mlE-(--1)qiuE) 

Here and henceforth the double bar denotes double transforms (Laplace and Fourier) and 
the single bar the Laplace transform. 

Since r,1*(g)= f CCIS ma,& sin ma, then for fixed u and s the functions FjrtN) (%,u,s) can 
be considered to belong to the space of generalized functions of slow growth S'/b/. Passing 
to the limit as N - co in this space, we have 

7 (E, u, s) =~~~jTj:‘(%, u, s) = (- l)j-7 ij-1 x (2.4) 
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T * - 

-yz cc (-l}l-(~-“6(~--T (k-(-lfqal)) z,(uE) 
g=.l k=-a7 

T =x/E, CC, = ai( zl (x) = eos x, zz {x) = sin x 

Let Vjr(N)(~, t) and vtr(x, t) denote the vertical displacements of points of the half-plane 

boundary due to the action of loads pjSN)(2,U,t) and pj,(s,u, t), respectively. We use the 
formula /7/ 

f2.51 

- ._ 
R (F, s) = (ZP + saF-4F ILEa + fW T/E* + s*, $ = 3 

Here v(x,_t) is the dimensionless vertical displacement of the boundary points of the 
half-plane (~(5, t) = u' (z, t)/a, where v’(x, t) is the dimensional displacement), p(s, t) is the 
dimensionless distributed load (p (r,t) ==p'(z, t)/p, p is the Lam& constant, and P’ (2, t) is the 
dimensional load), e, and c, are the longitudinal and transverse elastic wave velocities. 
To extract single-valued branches of the radicals 1/E"+. gBs8 and fk* + sa for a fixed real 

E in the s plane, slits are made from the branch points s = +iEIfi,fiEto infinity along the 
appropriate imaginary semi-axis. Those branches of the radicals are selected which take 
positive values on the real axis of the s-plane. 

We continue the functional (2.41,. from the space S /6/ to a subspace of functions from 

C(-+J,=) that tend to zero as l5l-~+ Using (2.5) we have 

FjF (X* U* S) = lili i$? (5, ut s, = (- l)j-’ f 2 RI (&f;, S) zj (X&c) 2, (br) 
k=-m 

&, = T (k + al), RI (E, s) = s* 1/E’ + WV 6 s) 

The functions E,,(~,m,s) (j,r = 1,2) enable us to write the transform of the vertical 
displacements of the boundary pointsofthe half-plane due to the action of arbitrary loads 

rs, (r, s) (P = 1, 2) which transform into an irreducible representation of a symmetry group, as 

Vj (X, S) = { i 3, (2, U, S) Is,,, (U, S) dU (j = 1,2) (2.6) 
0 *=I 

&lln (I, s) = Is, (x1 s) (z E XJd 

Let Pjol* and Wol* (i = 1,2) denote the principal vector and principal moment of the base 
reaction forces acting on the main stamp (located on the basic UC) 

d+l 

(2.7) 

Here ~J~~(cc~~,Q (j=1,2)are the contact stresses under the basic stamp under the effect 
of the loads P,,,,,,(t) and Mti(t)(j = 1, 2; m = O,+f, f2,.. .), thattransforminto the irreducible 
represenation of the group Clh on the system of stamps. The lumped forces P-(t) and moments 
MimR(t) are dimensionless. Their expressions in terms of the appropriate dimensional quantities 
are indicated in parentheses. 

We write the equation of moti.on of the basic stamp 

m. -ff$- = ppl (t) - P$, (0. m0 = mo’c22/(W 

Jo *” dr’ = ~$1 (t) - MT01 (t), Jo = Jo’cz2/bW (I = 1~2) 

Here mo'and J,,’ are the dimensional mass and axial moment of inertia of the stamp, W$\ 

and 'pal are its dimensionless translational and rotational displacements. Applying the 
Laplace transform to (2.7) and (2.81, taking into account that the stamps are at rest and have 
zero initial velocities at the intial time , and assuming small angular displacements, we will 
have for the displacements of points of the stamp base 

qol (x01, s) = 
Pjol(8) - “%I (4 + Rp1W - B;l(s) (xol_-d) (j=l, 2) 

mooa Jos’ 
(2.9) 
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Equating the right-hand sides of (2.6) and (2.9) for .c ,,1 E [d - %,d -t 11 and making the 
change of variables U=I] + d,x,,= 5 A- 6 we arrive at the system of integral equations 

3. We seek the solutions of system (2.10) in the form of a series of Chebyshev polynomials 

which corresponds to determining the contact stresses by means of the formula 

cc 

Prl(q -t 4 s) = 2 4, (4 -$f$- 
r=o 

(3.1) 

where A,,(t) are unknown functions of time. 
We substitute (3.1) into (2.10) and (2.7) for x01 = E -+ d, then we multiply (2.10) by 

T, (6)/V/1 - F and we integrate over E between -1 and +1. Using the equality (J,,(z) is the 
Bessel function of the first kind) 

(3.2) 

l T,, (4 s - sin bx dx = (- l)n TzJ~,,_~ (b) 
_l m (n = 0, f,2, . . .) 

we will have 

Here 
m 

B,,(S) = * + (- fPq z R1 (f&v S)kjhnhqKr 
h=-ca 

(3.3) 

(3.4) 

(3.5) 

(j,q=i,2; n,r=O,1,2,...) 
hlkt=n f$” (-1)1~*cos(~b)--6,‘(--1) - (I 1)/z sign (Ed sin (&h)l J, (l&hi) 
h2hr=n [6,"(--l)l/*sin (d&)+6,' (-i)(*~1)‘2sign (Ek)co~b%k)I J,(IEk I) 

s:=--$[(--1)‘~I], 6,“=+[(-1)‘+1] 

g11oo=gzzM)=do, g1111= gzm= dl/% &=-& t al=&- 
0 

while g,, = 0 for the remaining values of 1, q, n, r. 
We make the change of complex variable s=l/z in the infinite system of linear Eqs.(3.4). 

Under this transformation, the half-plane Res>Yt is mapped into the interior of the unit 
circle 1x-i I<$. For a fixed real E the function Rr(&,s) is analytic in the right half- 
PA&ye R; s > 0 and RI (E, s) - pi! for Res>y> 0. It hence follows that R~(&,,j/z)(k = O,-t_i, 

)... is analytic in the circle 1~ - 1 I< 1 

Then 

(3.6) 

(i,4=1,2; n,r,m=0,1,2 ,...) 
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all the cases encountered in solving the problem, the functions p,ai(ljZ) 
are analytic in the circle lz - 1 I< f andarepresentedthereinthe form 

(3.7) 

We will seek the functions &(1/z) in the form of the following series 

/l+)'$~ Apnn(Z-l)m (q=l,2; r=O,l,Z,...f 
VI=0 

(3.8) 

Substituting (3.6)-(3.8) into system (3.4) in which we have put S= i/2, and equating 
coefficients of identical powers of 2 - 1, we arrive at a recursion formula for systems of 
linear algebraic equations in Apn(q = 1,2;r,m = 0,1,2,...) 

Bi,A,=D,(m=0,1,2, . ..) 

I&,=&,, &=c,-;$+,,A, (m=1,2,3 ,...) 

B, = II Bjp,,m II (I, q = 192; n, r = 09% 2, - - .) 

Cm=]ICjnmII (j=l,2; n=O,l,2,...), 

A,=]j*4,,11 (q=l,2; r=0,1,2 ,...) 

Cjonz = LPjolm (j = 1,2), Cjzm = d&fjonn (j = %2), 

C+=O (j=1,2; n>2) (m=0,1,2 ,...) 

(34 

The convergence of the series on the right-hand side of (3.6) is proved in the same way 
as the investigation of series (4.4) in /l/. Exactly as in /I/, it is proved that for n,r> 1 

BjjnO = -$+o($), lBMwOl<+ 4iPq or A + r) 

where C is a certain constant. 

Substituting A,, = A$,,, /f/B,,,, into system (3.9) and dividing the left and right-hand 

sides of the fn-th row by '1/B,,,,&, we arrive at the system 

~~~A~~=~~~ (3.10) 

where Bf$,,,,,= 1, while for j#q or n #r 

lB$LI\<+s=O,rPl) rvx , --$(r=O,n>Q-f-$(hraQ (3.11) 

It follows from inequalities (3.11) that (3.10) is a normal system /8/, which means that 
it, and system (3.91, are solved by using reduction. 

Acting as in /l/, it can be seen that the coefficients of the series (3.8) satisfy the 
asymptotic form A,, = O(Ifm’). 

Fig-3 

As a result of the successive solution of the abbreviated systems form - 0, 1, 2, . . . we 
obtain the coefficients A,, (q = 1,2;r = 0,1,2, . . ..N.m = 0,1,2, . ..) of the expansion (3.8), 
Making the inverse substitution I = l/s and going over to the originals, we obtain (L,,,(t) is 
the Laguerre polynomial) 

AP*(t)= i Aarm(- (q=l,2:r=O,&Z,.,.,N) 
-0 

The generalized symmetric problem is solved in exactly the same way when the appropriate 
irreducible representation of the group Cl,, is one-dimensional. In this case, the functions 
of the basis (1.1) are transformed into a one-dimensional real representation. Carrying out 
calculations similar to those presented above, we reduce the problem to an integral equation 
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of the form (2.10). 

Fig.4 

0 

2 
-0.5 0 

Fig.5 

Fig.6 

4 8 t 

Fig.7 

The contact stresses determined in the solution of the generalized symmetric problems 
should be summed in order to evaluate the contact stresses under the effect of an arbitrary 
load from dron the stamp. 

Exanple 1. A stamp at whose middle a vertical harmonic force P(t)=H(t)c.os(ot) is applied, 
where H(t) is the Heaviside unit function (Fig.3), is at the endface of an elastic half-strip 
between two ideally smooth absolutely stiff guides. This problem is equivalent to a periodic 
contact problem with stamps arranged in pairs. In this case the load is converted into the 
one-dimensional representation with a= 0. As a result of applying the algorithm formulated 
above, we determine the contact stresses for different values of t. Graphs of the change in 
the principal vector'P* and the principal moment &i* of the reactive forces of the base in the 
time interval [O,iO] are presented in Fig.4 for 0=1.5,1=4,d=1.5. Curves 1 and 2 correspond 
to the change in P* andM*for d,=i2.5,dl= 10; curves 3 and 4 for d,= 100 and dl= 50. Contact 
stress diagrams are presented in Fig.5 for o= 1.5, 1=4, d= 1.5, do= 12.5, dl= 10 for the times 

it = 0.2; 0.8; 1.8; 2.8; 3.3: 4.8 (curves l-6, respectively) . 
Example 2. Two stamps are arranged symmetrically at the endface of the half-strip 

presented in Fig.6. The left face of the half-strip abuts against an ideally smooth absolutely 
stiff surface (the "sliding" face), and constraints hindering the vertical displacements of 
points of the faces (the "support" face) are at the right side. At t=O vertical unit forces 
P = 61 (t) are suddenly applied to the middle of the stamps. The problem of determining the 
contact stresses under these stamps is equivalent to the contact problem for a half-plane with 
a periodically duplicated system of two stamps. The half-plane is bonded from the half-strips 
mentioned above (Fig.6). The load is continued from the given (basic) half-strip to the rest 
so that it consequently turns out to be symmetric with respect to the sliding faces and anti- 
symmetric with respect to the support faces. It can be seen that P,(t) = -f?%(t)sin [(m - i)&). 
In this case a generalized symmetric problem corresponding to a two-dimensional irreducible 
representation of the group C1h with the parameter a=n12 must be solved. Graphs of the 
changes in the reaction under the stamps located on the basic half-strip are presented in 
Fig.7 as a function of t. Curves 1 and 2 correspond to the reactions under the right and left 
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stamps for d=2, curves 3 and 4 for d= 2.5 and the values of the remaining parameters are 

1 = 4, d, = 12.5,d, = 10. 
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ON THE NON-LINEAR BOUNDARY EQUATIONS OF THE MECHANICS 
OF THE CONTACT OF ROUGH ELASTIC BODIES* 

B.A. GALANOV 

As a generalization of the results of /l/, the existence and uniqueness 
of the solution of thecontactproblem of several rough elastic bodies (in 
the example of the contact of three bodies is proved). The method of non- 
linear boundary equations is used, which (like the variational method 
/2-5/l enables an effective investigation to be made of the correctness 
of the problem of body contact with unknown contact domains. 

1. Formulation of the problem. Let Ozyz be a Cartesian rectangular coordinate 
system, M&y) a point in the plane & = (z = 0) with the coordinates 5, yr mm{o} the 
Lebesgue measure of the set UC_&: Aa the biharmanic operator, supp~(~~ a carrier of the 
function v(M), Q an operator setting the function v(M), ME Q in correspondence with 
the function u+(M), Me 0 according to the rule u+ zz Qu = Sup {v(M), 0}, and L,,a = L,,(B) 
a Banch space of the vector-functions u(M)= (ur(M),vz(M)) (defined in the domain Q c Ez) 
with the norm 

11 Y (fw) II = (j (I ul (M) lr + I v2 (M) P&f)l’r t r > f 

For r=2 the space L,, is a Hilbert space with the scalar product 

(u, v) = j (Ul (M) VI (M) + % (.+f) v2 (W m&f 

The linear operator K acting from the Banach space E on the conjugate space E* to E is 
called strictly positive if (Kv,u)> 0, and the equality (Kv,v)= 0 is possible if and only 
if I)= 0 /6/ ((u,v) is the value of the linear continuous functional ~6% E* at the element 
v= E). 

We will consider the (frictionless) contact problem of an elastic body 1 and elastic half- 
space 3 with a plate 2 located between them (see the sketch, the y axis is perpendicular to 
the plane of the sketch). As a boundary value problem it reduces (with known assumptions) to 
the construction of the respective harmonic functions r&,(z,g,z)* %(cr,g,z) in the half-spaces 
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